Torsion of rational elliptic curves over the maximal abelian extension of ℚ

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the torsion of rational elliptic curves over quartic fields

Let E be an elliptic curve defined over Q and let G = E(Q)tors be the associated torsion subgroup. We study, for a given G, which possible groups G ⊆ H could appear such that H = E(K)tors, for [K : Q] = 4 and H is one of the possible torsion structures that occur infinitely often as torsion structures of elliptic curves defined over quartic number fields. Let K be a number field, and let E be a...

متن کامل

Torsion of Rational Elliptic Curves over Cubic Fields

Let E be an elliptic curve defined over Q. We study the relationship between the torsion subgroup E(Q)tors and the torsion subgroup E(K)tors, where K is a cubic number field. In particular, we study the number of cubic number fields K such that E(Q)tors ̸= E(K)tors.

متن کامل

Elliptic Curves over Q

All polynomials and rational functions in this essay are assumed to have coefficients in Q . Fix an integer n ≥ 1. An affine variety is a simultaneous irreducible system of polynomial equations in n variables. The Q -points, R -points and C points of the affine variety are all solutions of the polynomial system in Q , R n and C , respectively. Rational projective n-spaceg Q n is the set of line...

متن کامل

On computing rational torsion on elliptic curves

We introduce an l-adic algorithm to efficiently determine the group of rational torsion points on an elliptic curve. We also make a conjecture about the discriminant of the m-division polynomial of an elliptic curve.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 2019

ISSN: 1945-5844,0030-8730

DOI: 10.2140/pjm.2019.302.481